Lineare Gleichungssysteme mit Formvariablen

Beispiele:

1 Bestimmen Sie die Anzahl der Lösungen des folgenden linearen Gleichungssystems in Abhängigkeit von $m \in \mathbb{R}$. \bigcirc

(I)
$$2x_1 - 4x_2 + 2x_3 = 8$$

(II)
$$x_1 + 2x_2 + 3x_3 = 2$$

(III)
$$3x_1 + 2x_2 + mx_3 = 8$$

2 Bestimmen Sie den Wert von $a \in \mathbb{R}$ so, dass das System eine eindeutige Lösung hat.

(I)
$$-ax_1 + (a-2)x_2 = a$$

(II)
$$-x_{2} + x_{3} = 1$$

(III)
$$2x_1 - x_2 + 3x_3 = a + 2$$

3 Berechnen Sie mit Hilfe des Gaußschen Algorithmus den Wert für a, für den das folgende lineare Gleichungssystem keine Lösung hat. (Abitur 2002 BI)

(I)
$$x_1 - x_2 - x_3 = -4$$

(II)
$$x_1 + x_2 + x_3 = 3$$

(III)
$$x_1 + 5x_2 + ax_3 = 0$$

Lösungen:

1
(I)
$$\begin{pmatrix} 2 & -4 & 2 & 8 \\ (II) & 1 & 2 & 3 & 2 \\ (III) & 3 & 2 & m & 8 \end{pmatrix}$$

m = 7: das lineare Gleichungssystem hat unendlich viele Lösungen

m≠7: das lineare Gleichungssystem hat eine eindeutige Lösung

2

Für eine eindeutige Lösung muss gelten: $-4a+4\neq 0 \implies a \in \mathbb{R} \setminus \{1\}$

3

 \Rightarrow das lineare Gleichungssystem hat keine Lösung für, wenn $2a-10=0 \Rightarrow a=5$